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Abstract

Statistical reporting, especially of effect sizes, is at the root of many
methodological issues in quantitative research at CHI. Effect sizes
are necessary for assessing practical relevance of results, a-priori
power analysis, and meta-analyses, but currently, they are often
not reported. Interpretations in the context of the study and the
research field are also rare. To aid to researchers in reporting and
contextualizing their effect sizes within their research field as well
as choosing effect sizes for power analysis, we conducted a meta-
study of quantitative CHI papers. We extracted statistics from all
quantitative CHI papers published between 2019-2023 (N=1692).
Based on effect sizes and the papers’ CCS categories, we present
effect size distributions in 12 CHI research fields. Through an addi-
tional qualitative analysis of 67 quantitative CHI’23 publications,
we identify five categories of approaches that researchers take
when interpreting effect size: Comparing test-specific values, as-
signing size labels, using a statistical or methodological reference
frame, comparing different observations and interpreting for the
big picture.
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1 Introduction

Researchers frequently emphasize statistical significance when pre-
senting the outcomes of statistical tests. However, effect sizes are
equally if not more important [45], but are reported and discussed
far less frequently. This is problematic for two reasons: firstly,
knowledge about effect sizes in related work is vital to understand-
ing the practical significance of statistical results and to putting
them in context to what is common in the research field. Secondly,
knowledge about common effect sizes offers valuable guidance for
power calculations.

A priori power analysis is ideally used during the design phase
of a study to estimate the sample size necessary to detect a desired
effect. Eiselmayer et al. found that only 5 of 519 experimental papers
at the ACM Conference on Human Factors in Computing Systems
(CHI) used power analysis [44]. In the sub-field of developer-centred
usable security, Ortloff et al. [96] found that only 5 of 54 papers used
power analysis. As a consequence, of the 20 quantitative studies
in their analysis that reported enough information to conduct an
analysis, all were underpowered to detect small effects according
to Cohen’s effect size guidelines [31] and 11 did not even have
enough power to detect large effects according to these guidelines.
Underpowered studies present a threat to scientific validity since
they increase the likelihood of both Type I and Type II errors,
overestimate effect sizes, hamper future research and waste research
resources [45, 57, 58, 96]. Ideally all experimental studies should
conduct an a-priori power analysis [45, 96]. To do this researchers
have to decide what the minimum effect size which they want to be
able to detect is. Ideally, this is guided by effect sizes from previous
similar work. However, since work published at CHI focuses on
novel contributions [70, 97] there may not be enough prior work
that is closely related. In this case, the power calculation can be
guided by meta-analyses of effect sizes in the research subdomain.
However, for CHI, this does not exist yet.

Similarly, these meta-analyses would be helpful for the interpre-
tation of effect sizes in the context of the research area. Currently,
results are often interpreted using a binary scale - there is an ef-
fect or there is no effect. This is usually done by using the 0.05
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p-value cut-off criterion [13]. Further interpretation of effect size is
mostly limited to using the labels of “small” or “large” from generic
guidelines, if it is done at all.

However, generic, domain-agnostic guidelines for judging the
size of effects like Cohen’s [31] are criticized for not taking into
account domain-specific and study-specific information [31, 49, 106,
127]. To remedy this, alternative guidelines have been proposed for
various domains [15, 65, 106], including some in HCI [91]. However,
for a wide range of subdomains in HCI, no effect size guidelines
are available. This is unfortunate since effect sizes can vary quite
widely within a discipline, as has been shown for psychology [82].
There is also a lack of guidance on how authors can structure
their effect size discussion. The CHI submission guidelines call for
transparent reporting to enable replication, which would include
effect sizes, but they do not make concrete recommendations or
offer examples [24].

To tackle these problems our paper makes several contributions:

1) We created a meta-analysis support tool using an LLM (GPT-
40 [94]) to extract and categorize statistics from HTML CHI
papers. We focused on those values that are helpful for in-
terpretation, power analysis, and meta-analysis: effect sizes,
participant numbers, confidence intervals, and p-values. We
built in plausibility checks to ensure the LLM was not hallu-
cinating. We provide our extraction and analysis code!, so
other researchers can replicate our results, or extend it to a
subset of research that is relevant to them.

2) Using our tool, we extracted statistics from all CHI publica-
tions between 2019 and 2023 that contained statistical tests
(1692) and manually checked for inconsistencies. For our
meta-analysis, we classified publications into 12 different
CHI subdomains and created overviews for standardized
effect sizes for each of these research areas. We focus on
standardized effect sizes which can be converted into each-
other: Cohen’s d, Pearson’s r, R?, odds ratio, the Common
Language Effect Size (CLES), the non-parametric correlation
coeflicients Kendall’s 7 and Spearman’s p, Cramer’s V, and
n?, including variants like 1712, or w?. This data will aid re-
searchers in interpreting their effects in the context of their
domain and in planning power calculations.

3) To offer further support we analyzed effect size discussions
in papers from CHI'23 and identified five categories of ap-
proaches taken by researchers. We discuss these and offer
a framework to help authors choose which approaches are
appropriate for their statistical analysis.

2 Related Work

We explain key terms related to inferential statistics, focusing on the
two concepts of statistical power and effect size, before summarizing
related work on statistical reporting at CHI and other communities
and situating our work within the related work in the domain of
meta science. Finally, we discuss work related to LLMs.

2.1 Theoretical Background on Statistics

Roughly half of CHI publications use quantitative analysis to draw
and support conclusions [21, 22] and most use the Null hypothesis
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significance testing (NHST) framework to do this [66]. Various calls
to action have advocated for a switch to using Bayesian methods
for inference [66, 70], but as of now, most work still uses NHST [13].
Given that this work seeks to analyze the status quo of effect size
(use) in the CHI community, we focus on the methodological frame-
work used most, and will give a brief overview over key terms in
NHST, which are relevant to this work, while deferring to Kaptein
& Robertson [66] and Kay et al. [70] for criticism of these practices.

NHST is a problematic merger of two separate approaches to
quantitative data analysis, one by Fisher and one by Neyman and
Pearson [103]. It compares the null hypothesis which often assumes
no relationship between independent and dependent variables and
the alternative hypothesis, which does [45]. A p-value constitutes
the probability of getting results which are at least as extreme as
those which were observed in the sample, assuming that the null
hypothesis is correct [45]. To control for false positives (type I er-
rors), researchers only accept the alternative hypothesis, when the
p-value is below a set significance criterion a. Commonly, @=0.05
(5%) is used, however, this threshold and p-values in general are
also a critically debated topic [117, 150]. The probability of a statis-
tical test correctly rejecting the null hypothesis is called statistical
power [31]. Commonly, researchers strive to achieve a power of
0.8 [31, 38], which means that an actual effect will be detected 80%
of the time, while a type II error (false negative) occurs 20% of the
time.

The decision to reject the null hypothesis is binary, but research
results lie along a continuum. The effect size, which measures the
strength of association between independent variables and depen-
dent variables [45] represents this. On one hand, effect sizes can
be presented in the units of the dependent variable [6] or as dif-
ferences in percentages or amounts, which we refer to as simple
effect sizes. On the other hand, unitless effect sizes abstract from
the units of the study, e.g. by using normalization with the sample
variance [6]. Within unitless effect sizes, those related to group
differences (the d-family) are distinguished from measures of asso-
ciation (the r-family) [116] and risk estimates [49]. Finally, since the
effect size reported with a study is a point estimate of a population
characteristic, confidence intervals (CIs) communicate the uncer-
tainty around these estimates. CIs become more narrow, the less
uncertainty there is. The 95% CI is the most frequently used, and it
includes the true population value of the estimated parameter in
95% of the samples [45].

The most common type of power analysis is a-priori power anal-
ysis, where the necessary sample size is estimated from «, power,
and the effect size. This is an important step in planning a scientific
study, as underpowered studies may waste resources, since they are
likely to fail to reject the null hypothesis [45], and non significant
results are harder to publish [5, 122, 123]. Overpowered studies
may be overly sensitive and able to detect very small effects that
are not relevant in practice [45]. Additionally, when focusing only
on p-values to interpret the results of statistical tests, both under-
powered and overpowered studies can lead to misinterpretations
of the practical relevance [45].

Most power analysis software, like GPower [48] uses unitless
effect sizes in the procedures for a-priori power analysis, although
depending on the type of test, it may enable input of descriptive
statistics which are then used to calculate the unitless effect size.
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Several strategies can be employed to determine which size of effect
to use in a priori power analyses. Estimates can either be based
on similar studies from the literature [45], researchers’ judgments
of the smallest effect size of interest [3, 76]. or guidelines for judg-
ing the size of effects [45]. The most frequently used of these are
Cohen’s guidelines, whereby a Cohen’s d standardized effect size
of 0.2, 0.5 and 0.8 constitute small, medium and large effects re-
spectively, and for Pearson’s r, 0.1 is judged to be a small, 0.3 a
medium, and 0.5 a large effect [31]. Guidelines for risk based effect
sizes are not as commonly cited, likely because their interpretation
is highly dependent on the base rate of risk in the population, i.e.
when the base rate of risk is higher, then interventions lowering
this risk are more relevant. Other guidelines exist, but are not as
frequently referenced, e.g. Ferguson describes minimum thresholds
for practically relevant effect sizes of different types in Table 1 [49].
These guidelines have been criticized for not taking into account
context and methodological issues [31, 49, 122, 127]. To remedy
this, various domain specific guidelines have been proposed, both
inside the CHI-community [91], and in adjacent disciplines like
psychology [122].

2.2 Meta Research

Meta research is the study of research, which encompasses inves-
tigating research methods, reporting practice, reproducibility of
research, evaluation methods, and how to incentivize good sci-
ence [59]. Meta research has received much attention in the wake
of the replication crisis, whereby many scientific results have been
shown to be difficult or impossible to reproduce [34], most famously
in psychology [93] and medicine [57], but also in other fields, such
as economics [12].

This work contributes to the meta-research areas of methods and
reporting. Our methodological contribution is a process to extract
statistical values from scientific publications. Our contribution to
the domain of reporting is an overview over the range of effect
sizes common in various research areas at CHI and an analysis of
approaches used when interpreting them.

Other methodological meta research in HCI and CHI has in-
vestigated aspects of research methods from various stages of the
research process, from literature search [98], recruiting [119, 131],
types of participants [81, 88] and study methods [40, 111, 119] to
data analysis of quantitative [70, 84, 87, 110, 121, 147], and qualita-
tive data [95]. Other prior work examined the definition of HCI as a
discipline through the lens of problem solving [97], and investigated
meta-analysis [63, 64, 155] and systematic reviews [114] as well as
practices supporting research quality, such as pre-registration [30]
and open science [39, 50, 101].

Various aspects of reporting have been explored at CHI and in
HCI, including reporting of participant compensation [102], open-
ness and transparency [7, 120] and race and ethnicity [23]. On the
meta information level, Bd et al. discuss issues with authorship
order and propose an interactive solution [9]. Liu et al. explore
decision-making during study design and data analysis, and discuss
visualizations for communicating such decisions [84]. Research
investigating visualization of uncertainty [55] and presentation of
effect size [72] suggests that currently common ways of presenting
statistics, such as confidence intervals [55] or means and mean
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differences [72] may lead to research readers overestimating ef-
fects. There have also been efforts to foster transparent reporting
of statistical information [42, 68, 69, 145].

2.3 Reporting of Statistical Results

Reporting statistical results accessibly, understandably and com-
pletely is important to ensure other researchers can build upon prior
work, and form their own interpretation of findings. The CHI guide
to a successful submission stresses that “[...] statistical analyses
should be described with significant detail” and that such papers
“should include enough detail for an independent researcher or
practitioner to (1) independently evaluate the correctness validity
, and reliability of your [...] analyses and (2) reproduce and repli-
cate [...] experimental methods”, in its Transparency section [24].
However, it neither provides more detailed guidance on how to
achieve this, nor references guidelines that do so. A special interest
group on transparent statistics took place at CHI'16 [68] and the
group has since organized further discussions at CHI and IEEE
VIS [69, 139, 145]. Work is ongoing on a guideline for transparent
statistics reporting in HCI, with the section on effect size currently
in alpha, and other sections in the drafting stage [138].

Other disciplines have guidelines on reporting statistics which
are endorsed by some publication venues, of which we discuss
examples. In medicine, extensive guidelines exist for many special-
ized variants of study designs [46, 47]. One of the most frequently
referenced is the CONSORT checklist [85]. As the term checklist
implies, this does not give detailed instructions on how to report
information, but rather specifies what to report. Evaluations com-
paring quality reporting of endorsing venues and non-endorsing
venues suggest that it has a positive effect on reporting, although
problems with reporting remain [105, 141]. Other medical report-
ing guidelines are more detailed, e.g. even the abbreviated website
version for the AHA/ASA journals specifies the order in which to
present statistical values [62]. A more comprehensive version gives
some examples about commonly used effect sizes in the application
domain and consolidates the CONSORT guidelines within their
section on randomized controlled trials [1]. The publication manual
of the American Psychological Association (APA) gives detailed
instructions regarding various aspects of the publication process,
including reporting [4]. The main text remains non-specific due to
the variety of possible tests, but the sample tables include examples
of the information which should be reported for several commonly
used tests in psychology, including t-tests, y?-tests, ANOVA and
regression [4].

Prior work suggests that reporting statistical results in a com-
plete and transparent way is a challenge that applies to many dis-
ciplines related to aspects of Human Computer Interaction (HCI),
such as psychology [90], social science [130], software engineer-
ing [65], usable security [32, 54, 96], as well as in the domain of
HCI itself [22, 89].

Salehzadeh Niksirat et al. investigated reporting practices at
CHL, including of statistics, and found that reporting of descriptive
statistics, clearly stating the test procedure, and reporting of test
statistics and p-values was largely sufficient, but reporting of effect
sizes and even more so, confidence intervals was lacking [120]. Be-
sancon and Dragicevic focused on the communication of results as
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dichotomous, i.e. using significant vs. not significant as a proxy for
the results being interesting or relevant and found that phrasings
related to dichotomy are common at CHI [13]. Dragicevic et al. pro-
pose reporting multiple possible analyses, i.e. multiverse analyses,
to promote transparency of statistical reporting [42].

2.4 Large Language Models

Language models are statistical models which predict the next word
or token in a series of words by assigning a probability to each se-
quence of words [11]. Large Language Models (LLMs) may use
billions of parameters and are trained on huge datasets [17, 37, 137].
This means that they are able to generate natural language con-
vincingly and do not require as much topical fine-tuning of param-
eters as prior models, and can be tuned using prompts [153]. The
most popular architecture is currently the transformer architec-
ture [133, 143].

Research has investigated various use cases for generative Al
like LLMs, e.g. in information extraction [26, 27, 80, 107], annota-
tion [135, 156] or reasoning [28, 146], and more domain-specific in
education [10, 67, 136], as a programming aid [10, 86, 142], and in
science [134, 144, 148].

We focus in particular on work using language models to extract
data from scientific publications. Lee et al. developed a BERT-based
model pretrained on biomedical text [80]. Circi et al. explored the
capabilities of three different LLMs: GPT-3.5 and -4, and Claude to
extract sample information about polymer nanocomposites [26].
They used prompts and provided a JSON template to fill for the task
and reached an F1 score between up to 0.88 for Claude2 and 0.36
for GPT-3.5 [26]. Polak and Morgan extracted material properties
from research literature, using prompt engineering with GPT-4
and GPT-3.5, as well as LLAMAZ2 for an open source comparison
to achieve around 90% precision and over 80% recall, when using
GPT-4 [107].

While LLMs have many interesting applications and use cases,
they also come with disadvantages. Even if the generated con-
tent seems convincing and well-phrased, responses can in fact
be misleading and contain wrong information [61]. This is called
hallucination [61]. In addition, LLMs and Al in general do not ac-
tually know or understand the text they generate or the prompts
they are given, but generate text based on probability distribu-
tions. These are dependent on the training data, and will repeat
biases present in the training data [11]. Training data scraped from
the internet is not a balanced representation of the global popu-
lation, over-representing younger people and people from devel-
oped countries [11]. This leads to LLMs generating content that
exhibits biases against marginalized populations, e.g. replicating
stereotypes [8, 11, 20, 157], and that contributes to echo chambers
and polarization of debates and opinions [126]. Finally, model de-
velopment, training, and deployment incurs environmental costs.
Increasingly large numbers of parameters also increase the amount
of energy needed during training and development [11, 129], as
well as increasing CO emissions [129] and water consumption, e.g.
from cooling in data centers [158].
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Figure 1: Overview of Extraction Process

3 Extracting Statistics

In this section we describe our data collection process to extract
statistical information from five years of CHI publications. Figure 1
shows an overview of the extraction and analysis process.

We downloaded and filtered the CHI papers, so that only quan-
titative papers remained (see Section 3.1). For a given paper, we
extracted identifying information, i.e. the title and DOI, as well as
the abstract and structure of the paper from the HTML to pass to
our LLM agent in the next step. As described in Section 3.3, the
agent used our prompts and this information to request content
from the paper and extract the relevant statistics described in Sec-
tion 3.2. The final output per paper was converted to JSON and
forms the basis of our meta-analysis, which we describe in Sec-
tion 4. To enable re-use of our data, we provide the scripts used for
analysis and our analysis results on Github 2.

3.1 Sample of CHI Publications

We selected five years of CHI publications for our analysis (2019
to 2023). CHI was first published in HTML format in 2019. This
machine-readable format facilitates extraction considerably. Using
optical character recognition (OCR) to generate machine-readable
text from PDF is especially error-prone around tables [36], dia-
critics [14] and when mixing languages [100]. Statistics are often
reported in a mix of Greek and Latin letters, with sub- and super-
scripts and frequently in tables, so using the machine-readable text
from HTML directly is more reliable.

Concurring with prior work [21, 22], we define a quantitative
paper as one reporting statistical tests. We used regular expressions
to identify p-values, Cls, and Bayes factors. P-values and Cls are
specific enough to ensure that an actual test was conducted and
reported, rather than theoretical papers discussing the merits of
statistical testing methods, and at the same time not limited to a
single type of hypothesis test in the way that e.g. effect sizes are. We
configured our regular expressions to include variations in capital-
ization and plural and singular terms. For confidence intervals, we

2https://github.com/Behavioral-Security/A-meta- study- of-effect-sizes-at- CHI
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filtered for singular and plural of use of the term “confidence inter-
val”. Since the often used abbreviation “CI” is a letter combination
not uncommon in English, we did not use this as a filter. To get an
idea of the frequency of use of Bayesian statistics for analysis, we
filtered for inclusion of the term “bayes factor”, since Bayes factors
are a common way to compare models in Bayesian analysis [125].
If a paper satisfied at least one of these criteria, we included it in
our sample of quantitative papers. We evaluated our filtering crite-
ria by manually checking a random sample of 145 papers evenly
spread over all five years in our sample. In our evaluation, all but
two papers were correctly classified, one each as false negative and
false positive. False positives may occur due to meta-scientific or
theoretical papers discussing statistics, but not using and reporting
statistical tests, such as [18]. False negatives can be caused by pa-
pers using “p>", “p=" or “p<” for values abbreviated p, which are
not statistical p-values, although this did not occur in our filtering
ground truth, or by papers reporting statistical tests, but providing
statistical values only in images, e.g. [25] reporting the results of a
Wilcoxon ranksum test in a Table included as an image.

Between 2019 and 2023, 3724 papers were published at CHI. Of
these, we identified 1692 (45%) to be quantitative and used these
as the basis for the rest of our work. The ratio of quantitative
to qualitative papers is similar to findings in prior work [21, 22].
Of these quantitative papers, 13 (0.8%) were identified as using
Bayesian methods, which we did not include in the meta-study.

3.2 Statistics of Interest

We focused on extracting the information most relevant when deriv-
ing domain-specific guidelines for effect size judgments: The name
of the conducted hypothesis test, sample size N, the p-value, effect
size and the confidence interval around the effect size. For some
types of tests, like regressions with multiple factors or multi-way
ANOVAs, multiple p-values, effect sizes and confidence intervals
may be associated with a single test.

These statistics are generalizable in the sense that they apply to
many tests in the NHST paradigm, which avoids the need for sepa-
rate handling of every imaginable test. For this reason, we decided
to focus on standardized effect sizes. Confidence intervals around
the effect size can be used to gauge reliability of the estimates, how-
ever, reporting confidence intervals around effect sizes is currently
not common at CHI. In their absence, sample sizes can be used
to assess reliability. Test names are necessary to get information
about the experiment design, as effect sizes may share a name, but
be calculated differently for within group compared to between
groups designs, as is the case for Cohen’s d, which has versions for
both. Finally, while p-values are not directly useful for our further
analysis, they seem to be the statistic reported most often and serve
as an identification criteria of hypothesis tests conducted based on
NHST.

3.3 Extraction Tooling

We focused our extraction on data available in text form, includ-
ing the main text, tables and captions but excluding images. Text
extraction from images requires OCR which can be inaccurate, es-
pecially for non-latin characters [14, 100], and if extracting values
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represented by visual elements, the accuracy depends on the scale
of the image. We did not analyze supplemental material.

We used OpenAI’s GPT-40 [94] in combination with a LangGraph-
based agent [79] to extract the statistics and used the lowest possible
temperature settings to lower randomness in our extraction process.
Our prompts are described in more detail in Section 3.4. Three tools
were defined for the LLM to utilize: a section read tool, a table read
tool, and a test report tool. The read tools allow the agent to request
a section or table. The agent can specify the section or table by its
index or heading. Sections are returned as plain text, while tables
are returned in csv-format, accompanied by a prompt instructing
the LLM to read the table row by row. The report tool provides
the LLM with a set of predefined fields that must be satisfied with
statistical test data, such as the p-value or the effect size measure
type, or “‘UNKNOWN?”. Upon receiving the initial prompt, the LLM
determines which sections to request via the tool. Based on the
section text, it identifies the statistical tests and makes use of the
report tool. This process is subsequently repeated with the tables.

3.4 Prompt Engineering

We built on our experience extracting statistical information from
papers, e.g. from creating the ground truth as described in Sec-
tion 3.5, to derive an initial prompt. We improved on this prompt
through manual experimentation, similar to [112, 135, 156]. For
example, in the extraction results based on our initial prompt, infor-
mation from tables was largely missing. In subsequent iterations,
we adjusted the prompts and tooling to consider tables separately.
Our prompts consisted of a system prompt and a task prompt. The
system prompt consisted of a persona description and general in-
structions including response format. The task prompt had a closer
description of the task, including the statistics and information to
be extracted and a description of special cases and how to han-
dle missing information. Finally, the prompt included information
about the paper which we extracted from the HTML beforehand:
the title, abstract and structure, i.e. section indices and headings, as
well as table indices and captions. We provide the final prompts in
the supplemental material.

3.5 Evaluation

We manually annotated a sub-sample of quantitative CHI papers
(N=25) to compare our extraction results to. To create this extraction
ground truth, we collected a random sample of five quantitative
papers per year from our sample. One researcher with a research
focus on methodology and statistics manually extracted the relevant
statistics and entered them into a JSON data structure so they
were human- and machine-readable. To reflect the data available
to the LLM, they only used information from the main text, tables,
and captions. The researcher corrected typographical mistakes (“p
< 05”, e.g. missing the decimal point). Context was used where
possible to derive values, e.g. sample sizes for an individual test
from tables reporting demographics, or from degrees of freedom
and the number of conditions in a test [99]. In case of uncertainties
the researcher discussed these with their co-authors and noted
remaining uncertainties within the ground truth.

For evaluation based on the ground truth, we focused on the
effect sizes and that they are reported together with the correct
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test and sample size. From the 25 papers, we extracted 528 tests
of which 438 did not contain effect sizes. From the remaining 90
tests, we extracted 403 effect sizes. Of these, 130 were relevant for
the meta-study. The remaining effect sizes consisted of 258 regres-
sion coefficients and 15 correlation coefficients where the type of
correlation was not specified. We could not use regression coeffi-
cients for the meta-study because additional descriptive statistics,
i.e. the standard deviation of the outcome variable, and group sizes,
are necessary to convert them to an effect size useful for meta-
analysis [83].

Overall, 86 of the 130 effect size values were extracted correctly
by the LLM and 2 were extracted with a missing —, i.e. the wrong
direction of effect was extracted, which is not critical, since we
use absolute values in the meta-study. 42 were missing. Of these,
23 effect sizes were only reported in tables, and not individually
addressed in the text, 12 were Cohen’s ds reported as part of a meta-
analysis, but only in the form “d=", which might not be clearly
associated with statistics, and one was reported in the method
section, which might not have been requested by the section read
tool. The remaining 6 missed effect sizes were clearly identifiable
as statistics by us and we do not know why the LLM did not extract
them. No effect size values were extracted incorrectly. Having no
incorrect effect size values was our main goal, so we accepted the
32% false negative rate

Of the relevant 90 tests we extracted manually, the LLM ex-
tracted 64, of which 37 were extracted with correct and complete
test names, 9 with correct, but underspecified names (e.g. “t-test”
instead of “dependent t-test”) and 14 with incorrect names. The
test names are only relevant to distinguish between within or be-
tween groups designs. For the 64 tests which were extracted by
the LLM, participant numbers were extracted correctly in 49 cases
and incorrectly in 12 cases, where the LLM did not recognize that
a different subsample was used in the test. Three tests were not
reported with determinable sample sizes. The sample sizes do not
directly affect the effect size, but only the weighting of the effect
sizes in the meta-study.

Given that we prefer missing data to wrong data, we considered
this sufficient for use in our meta-study and used our extraction
procedure on our full sample of CHI papers.

4 Constructing Effect Size Guidelines for CHI
Research Areas

We converted the effect sizes extracted in the previous section to
a common effect size to investigate effect size distributions in 12
research areas at CHL

4.1 Categorization of Papers

To identify papers’ research areas for our meta-study, we started
with the top level ACM Computing Classification System (CCS) cat-
egories. A paper can fall into multiple different categories. Human-
centered computing was unsurprisingly the most frequent research
area by a large margin (3280, or 91.6% of all papers) with the next
most frequent category being applied computing (10%). Other cate-
gories were also fairly general, making them less useful. To remedy
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this, we decided to additionally use the subcategories of these gen-
eral three categories, general and reference, human-centered comput-
ing, and applied computing, for more concrete and thus interpretable
research areas.

For our sample of quantitative CHI papers, this resulted in 141
different categories. In the following we describe the categoriza-
tion for a subset of these, the 599 papers, which reported effect
sizes which we used in our meta-study. For the most frequent CCS
categories, we merged two pairs of categories which were concep-
tually similar. We merged user studies and empirical studies in hci as
well as empirical studies in collaborative and social computing and
collaborative and social computing. We then chose the top 10 most
frequent categories, which were specific enough to allow distinc-
tion between papers and covered the largest possible number of
these papers. There were two more categories which appeared the
same number of times as the least frequent of these categories, in
27 papers, so we included these to avoid excluding categories due
to alphabetic ordering, and not different frequency of appearance.
This resulted in 12 research areas. While we extracted statistics and
conducted our meta-analysis for all quantitative CHI papers, we
focus analysis per research area on these 12. Only 12 papers of 599
do not fall into one of these areas, they are nevertheless included
in our meta-analysis when we discuss effect sizes at CHI overall.

While we would have liked to use CHI-specific categories such
as the subcommittees, data on subcommittee assignment is not
available publicly. Of the 12 categories we discuss, collaborative and
social computing, interaction design and security and privacy match
well with the more CHI specific categorization into subcommittees
of Interaction Beyond the Individual, Privacy and Security and Com-
putational Interaction respectively. Some matches between these
two categorization schemes are not as clear. Our categories of inter-
action design and human computer interaction (hci) also fit to some
extent with the CHI subcommittees of Blending Interaction and
Interacting with Devices. Our results for these categories are directly
applicable for researchers submitting to CHI. The subcommittees
of Accessibility and Aging and Learning, Education and Families
have overlap with the category of social and professional topics
and the same applies to the subcommittee of Specific Application
Areas and applied computing. Our guidelines for these categories
may be better suited than those for CHI overall, but researchers
should take their own research specifics into account, even more
than for some of the other categories. While our research areas of
virtual and mixed/augmented reality are concrete and identifiable
for researchers, they lack an equivalent within the subcommittees.

4.2 Converting Effect Sizes

For our meta-study, we focused on standardized effect sizes which
can be converted into each-other: Cohen’s d, Pearson’s r, R?, odds
ratio, CLES, the non-parametric correlation coefficients Kendall’s
7 and Spearman’s p, and 2. In addition, 1]12, (partial eta-squared)
is equivalent to 72 in one-way ANOVA, but not for multi-way
designs [75], where all r]f, may add up to values of over 1 [113].
However, judging the size of 12 is possible through effect size
specific benchmarks derived from those set up for Cohen’s d [31,
113] and as such, we included it in our calculations. Similarly other
variants of 52, such as generalized 72 (UZG) or less biased variants
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like ? may not always yield the same value when applied to the
same data set, but they are measured on the same scale as 7% and
we treated them as such in our calculations. On the other hand, we
excluded pseudo-R? used in logistic regression, such as McFadden’s
or Nagelkerke’s pseudo R?, since they are not measured on the
same scale, but their true maximum depends on the data used in the
model [115, 128]. Similarly, we excluded ¢, since it is only the same
as Cramer’s V in 2x2 contingency tables, but different in larger
tables [33], and based on our extraction, we cannot tell reliably
which is the case.

Given that more conversion formulas were available for r, and
its value range is clearly bounded in contrast to Cohen’s d, where
the upper limit is co, we converted all effect sizes to Pearson’s r.
Since we were not interested in the direction of effects, but only
the size, we used the absolute value of the reported effect sizes in
the conversion. We applied the average correction factors to our
conversions, which Poom and af Wahlberg derive through Monte
Carlo simulation to improve the accuracy of converted effect sizes
for meta-analyses [108]. For individual cases, this can lead to values
outside the valid range for r. We report and incorporate these in
our meta-study as is to provide consistency for conversion back
to the original effect size. Researchers using the guidelines should
refer to Table 1 for the valid range of effect sizes and only interpret
them within this range. The conversion formulas we used are also
in Table 1.

4.3 Data Cleaning

We describe the process of data unification and cleaning in the
following.

Some statistical tests have multiple names, a common example
being the Wilcoxon rank-sum test, also known as Mann-Whitney
U test or Wilcoxon-Mann-Whitney test. In addition, our LLM-
extracted data often contained additional information on the vari-
ables involved in the test as part of the name. For further analysis,
we unified the test names by mapping them to a list of test names
we collected from a statistical text book [51]. We added the names
of extracted tests which did not correspond with the tests on our
list where applicable. We followed a similar procedure for the effect
size measures, except that we focused specifically on effect sizes
we would use in our meta-study, as described in Section 4.2

In our analysis of the ground truth, we noticed that sometimes,
effect sizes were reported twice: once as a factor, and once with the
omnibus test, so for our final analysis we removed 6009 rows of
data containing duplicates.

Since manual extraction and checking for a ground truth is time
and labor intensive, and cannot tell us about performance in the
full sample, we also implemented several plausibility checks using
regular expressions on the HTML source, focusing on effect sizes
and Ns, as we primarily used these values in the meta-study. Due
to inconsistencies in how statistical values are formatted, a simple
check that matches exact values in the HTML is insufficient. There-
fore, we designed regular expressions to capture variations, such as
leading zeros, white spaces, and different formula representations,
and also created a synonym mapping for statistical measure names,
as these are used inconsistently across different authors. These
plausibility checks initially flagged 235 effect size values and 110
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Ns, which we manually checked. We removed 34 wrong effect size
values and 40 wrong Ns from the data set.

As an additional plausibility check on the effect size values, we
checked that they were within the limits of a valid effect size of the
reported effect size measure, as depicted in Table 1. We removed
43 of 6755 effects for invalid effect sizes. These invalid effect sizes
can be due to a hallucination, but can also be introduced into the
papers through human error, such as the ones we found during the
creation of our human-annotated ground truth, where we saw a
correlation coefficient larger than 1.

4.4 Data Analysis

We used R [109], specifically the tidyverse [151] for data manipu-
lation and weighted_quantile() from the modi package [56] for
the meta-study.

Effect sizes from within- and between groups designs should
not be compared directly, since the error variances are calculated
differently for different designs, especially in the case of l]f, [92],
which was quite frequent in our sample (21.3% of the valid values).
Due to our method of extraction, we used information from the
extracted test names and in some cases also effect size measures to
derive the experiment design, e.g. independent t-tests are conducted
for between groups designs and dependent t-tests for within groups
designs. However, due to unclear reporting of tests as merely “t-
tests” without further specification or various types of regression
where determining the use cases in terms of experiment design
required disproportional effort, 1379 (20.6%) of effect sizes could
not be assigned to an experimental design for certain. Analysis
results from within-groups designs have less random error and e.g.
the same difference between groups results in a larger effect size.
Wrongly counting an actually within-groups effect size from an
unclear test as a between-groups effect size means it will likely
be comparatively larger than the between-groups effects. Within-
groups studies generally have less random error than between-
groups studies. Thus, given an effect size reported with an un-
known study design, classifying this as between-groups would
represent a larger etfect (e.g., mean difference) than classifying E
as within-groups. Therefore, misclassification of a within-groups
effect size as between-groups will shift the overall distribution of
the effect sizes to be larger than they actually are. Overestimating
effect sizes is already a problem due to publication bias [58]. We
believe underestimating effect sizes to be less grave and wanted to
retain the information value of the unclear effect sizes and so we
counted them as within-groups.

For each of these analyses, we first calculated median effect sizes
per paper, weighted using the sample size of each test. We chose to
use the median as a measure of central tendency, since we are inter-
ested in typical effect sizes at CHI and robustness against outliers.
Where sample size was not available, we calculated the median
sample size for the paper as a stand-in, and if no sample sizes were
extracted for a given paper, we substituted the overall median sam-
ple size, 40. For extreme values of sample size > 352.5, using Tukey’s
fences as the outlier criterion [140], we substituted the maximum
non-outlier value: 352.5. Tukey’s fences identify outliers as values
that fall beyond 1.5 times the interquartile range (IQR) above the
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ES equivalent ES  valid range Conversion formula Source  correction factor
r w, -1to1 - - -
Cohen’s d —ooto+co  rxdf(d+4)0° [53] 1.27
odds ratio (OR) 0to + oo r~ (OR* —1)/(OR>> +1) [52] 1.46
Kendall’s ¢ -1to 1 r~ Sin(0.5 X 7 X 1) [71] 1.01
Spearman’s p -1to1 r=2XxSin(p X n/6) [118] 1.02
172 R2, 2, €2 Oto1l r = \/? [51,53] -
Cramer’s V Oto1 r=V [33] 1.44
CLES Oto1l r ~ sin((CLES — 0.5) X ) [43] -
Cohen’s f 0 to +o0 d ~ 2f - use conversion for Cohen’sd [31] -
Cohen’s f2 0 to +oo reAfe(fE+1) [31] -

Table 1: Overview over the effect size measures included in the meta-study, including valid ranges, formulas for conversion of
effect sizes to r and sources for the conversion formulas. Correction factors are mean correction factors taken from Poom and
af Wahlberg [108]. Correction factors were not available for all effect size measures.

75% quantile or below the 25% quantile [140]. We used the sam-
ple size as weights, since larger sample sizes lead to more reliable
estimates [45] and sample sizes were more consistently reported
and extracted than for example confidence intervals, which also
help judge reliability. Calculating a per-paper median first avoids
undue influence of a single paper with an extreme amount of tests
on the average overall [45]. We did this separately for the within-
groups and between-groups designs. We grouped these per-paper
measures of central tendency according to the categories assigned
to each paper to get the distributions of effect sizes for different
research areas at CHI. We followed prior work on domain-specific
effect size guidelines, which approximated small, medium and large
effects in a specific research area, by dividing the distribution into
thirds and calculating the median effect size within these thirds as
a threshold between size categories [65, 91]. To counter the bias
towards large effect sizes [45], we again used medians weighted by
sample size.

4.5 Limitations

Even though there has been criticism of NHST and prior work has
argued that Bayesian statistics are better suited for CHI's needs of
gaining precise knowledge and estimates even from small sample
studies [70], we focused our meta-study on NHST statistics and
effect sizes, as this is still the most commonly referenced statistical
paradigm at CHI. While Bayesian statistics may be more suitable,
they also require a significant learning curve to get started [104].
Phelan et al. have investigated providing analysis templates to make
it easier, but it was still hard for researchers without a statistics
background to trust the priors recommended by the templates [104].
This means that wide-spread adoption of Bayesian statistics could
still be some way off, so we believe it is worthwhile aiding knowl-
edge accrual when NHST is used in the meantime.

Our LLM extraction process, like any use of LLM, can include
hallucinations [61] or other mistakes. We did our best to mitigate
their influence as much as possible. We used the lowest possible
temperature settings to lower randomness in our extraction process.
Additionally, we used automatic and manual plausibility checks
especially on numeric values to check whether they actually exist
in the papers. For the effect sizes in our meta-study, we reviewed

that the effect size measure fit with the test it was reported with and
additionally screened out values not in the valid range of values
for the specific effect size measures. On the whole we designed our
approach to err on the side of caution, rather accepting that effect
sizes were missed than incorrect ones were included.

Our effect size meta-analysis is naturally only based on those
tests which report effect sizes. Unfortunately these are not always
reported. Additional information such as exact test/experimental
design and sample sizes also are not always clear and we had to
make inferences. Our ground truth analysis highlighted that our
LLM missed effect sizes not clearly referenced as such in the text.
Thus, our meta-analysis only provides a view on a subset of effects
at CHL Our LLM also did not always correctly identify the correct
subsample N, leading to possible overemphasis of certain effects.
Finally, the LLM did not always extract the correct test names, lead-
ing to uncertainty, regarding the between or within groups study
designs. In practice, researchers also often interpret effect sizes
from within and between groups designs in the same way [122].
However, despite these issues, since all extracted effect sizes in our
ground-truth evaluation were correct, we believe our data set is
large and robust enough to serve as a valuable starting point for
the community. We believe this is a useful step forward over the
state of the art. In future work, we hope to establish automatically
generated and machine readable supplemental material containing
all necessary information on tests to remove the above issues.

Converting effect sizes to a different effect size measure can also
introduce biases. Poom and af Wahlberg showed in their simu-
lations that common conversion formula may lead to systematic
misestimations [108]. While some effect sizes are derived from the
same basis, they are not all numerically equivalent - being based on
different experimental designs [31]. Wherever possible, we use the
average correction factors provided in their work, but they were not
available for all effect sizes we incorporated [108]. We nevertheless
wanted to include as many effect sizes as possible, since selective
exclusion may also bias the results of the meta-study.

For the most part, effect sizes in our analysis were sample based
effect sizes, that aim to provide an estimate of the effect in the
population. However, they can be biased estimators [75, 113]. Some
less biased effect sizes measures, like ©? for ANOVA-Type analyses
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or Hedge’s g for mean comparisons are recommended [75], and
were also used to a small extent in our sample, but for our overview
of effect sizes at CHI, both less and more biased effect size measures
were incorporated, to the extent that we identified conversion for-
mulas for them. When considering only published results, as we do
in our work, publication bias has an influence on the size of reported
effects [58]. Papers with statistically significant results are more
likely to be published, but papers with small sample sizes (such as
many of the studies in our sample) have poor power to detect small
effects, so it is more likely that published effects are larger than
true population effect sizes [45]. We fully expect that updates to our
recommendations will be necessary as the CHI community moves
towards more detailed effect size reporting practices. However, to
provide assistance to researchers now, we have to make use of the
data we have now, biased as it may be.

Finally, because the CCS we used to categorize our sample are
used by the whole ACM, they are not specific to CHI As such some
of the discussed research areas, like security and privacy are more
granular and useful than other more general ones, like empirical
studies in hci. To enable researchers to make usable inferences for
the categories they view as most interesting, we have published our
dataset, including the extracted statistics and categorization per
paper on OSF. Through matching by doi, researchers with access
to different categorization metrics could include these.

4.6 Results

We present an overview of the distribution of effect sizes reported
in different research areas at CHI. Our sample for the guidelines
consists of 599 quantitative CHI papers from 2019 to 2023, which re-
ported effect sizes we could clearly identify and convert to Pearson’s
1. The most frequently reported tests were ANOVA (18.0%), followed
by repeated-measures ANOVA (14.5%) and Pearson’s correlation
(5.1%). Correspondingly the most frequently reported effect sizes
were r]f, (21.3%), Pearson’s r (16.7%), and 5? without any specifiers
(14.4%), followed by Cohen’s d (12.7%) and OR (10.8%). Among all
of the valid effect sizes, 6.4% were reported without any hypothesis
test specified.

Figure 2 shows the distribution of effect sizes calculated over all
599 quantitative papers (incorporating 4381 tests and 6712 effect
sizes) as well as for the individual research areas. We also differenti-
ate between within-group and between-group experiment designs.
In Table 2 we report the median sample sizes and the number of
papers® used to calculate our thresholds. The higher these num-
bers are, the more robust the thresholds will likely be for a given
research area. In our estimation, more caution is advised for the
areas of interaction design, mixed / augmented reality, social and
professional topics and computing methodologies. While we still
find the thresholds useful for putting results in context, since it
is the best context we have, for power analysis, we recommend
adding some buffer because effect sizes might be inflated and/or
unduly influenced by a small number of outliers.

Guidelines for all effect size measures included in our meta analy-
sis can be found in Table 3. The research area specific size guidelines

3Papers can contain both within and between group effects thus the numbers do not
add up to 599

CHI ’25, April 26-May 1, 2025, Yokohama, Japan

are provided in Table 4 for Pearson’s r. We calculated the thresh-
olds using Pearson’s r, but for convenience, we provide the size
guidelines converted for the other effect size measures, r]z, Cohen’s
d, OR ,CLES, Cohen’s f, Cramer’s V, f 2 Kendall’s 7 and Spearman’s
p, in the appendix.

According to Cohen’s guidelines, r=0.1, 0.3, and 0.5 would be
considered small, medium and large effects respectively [31]. For the
overall between group effects in our CHI sample, these thresholds
would be 0.14, 0.27, and 0.61 respectively, and for within group
effects, 0.12, 0.32 and 0.72.

While the overall small and medium effect threshold for between
groups at CHI is relatively similar to Cohen’s guidelines, the thresh-
old for large effects is higher. This is even more pronounced for
within groups effects. But most importantly we see clear variation
between the different research areas, e.g. with effect sizes generally
lower in security and privacy, compared to collaborative and social
computing.

Since sample size influences the size of effect that is detectable
by a significance test, we also plotted the sample size distributions
in Figure 3. We used both box plots to show summary statistics,
and violin plots to give more information about the shape of the
distribution. Plots display the sample sizes as used for our meta-
analysis of effect sizes, e.g. the maximum sample size considered
was 352.5, the cut-off for outliers according to Tukey [140] and
all larger sample sizes were interpolated as this maximum sample
size. This is visible in the slight overemphasis of distributions at
that sample size. For most research areas, sample sizes are skewed
towards small sample sizes, and are smaller for within groups de-
signs, which makes sense since these have more power to detect
effects, so fewer participants are needed. For collaboration and social
computing, security and privacy, and social and professional topics,
this skew is not as obvious and sample sizes are evenly spread or
even skewed towards higher sample sizes. Mixed/augmented reality
and virtual reality are also somewhat special cases, in that they
exhibit comparatively lower sample sizes than other research areas,
likely due to hardware and special equipment needed to conduct
such studies, representing a limit on the number of participants it
is possible to recruit.

Combining insights from both effect size and sample size dis-
tributions, it seems that effect sizes in some fields, like security
and privacy are smaller than in others, even though these fields
have access to comparatively large sample sizes, which would en-
able them to detect both small and large results. However, there
is no clear pattern based on sample sizes, given that the effect
size thresholds for mixed/augmented reality, which has primarily
smaller sample sizes, are not higher than for the rest of CHI. Figure 4
shows the relationship of sample size and effect size for all papers
included in the meta-study. There are negative correlations which
would be judged as between medium and small in the context of
all analyzed CHI papers, see Table 3. This may be because in some
papers, effect sizes were only reported for significant results, so
small effect sizes were possibly under-reported, effect sizes from
small studies might be inflated, and it could also be an indicator
for publication bias. However, around the median sample size (50
for between-groups and 28.5 for within-groups designs) effect sizes
are distributed across the whole spectrum from very small to very
large. In comparison, an analysis of 447 papers in psychology found
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Figure 2: Histograms of median effect sizes (Pearson’s r) per paper, reported separately for different research areas and
experiment designs. Research area specific size guidelines superimposed on the histograms.
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Figure 3: Violin plots and box plots displaying the distribution of median sample sizes per paper, as used in the meta-study,
separately for different research areas and experiment designs.
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research area between groups within groups

N’ Paper sample size \ N° Paper sample size

min median max ‘ min median max

all 359 1 50.0 289 mill. 346 4 28.5 7010271
applied computing 57 3 67.5 289 mill. 43 6 40.0 100000
collaborative and social computing 41 20 195.0 289 mill. 30 27 70.0 7010271
computing methodologies 33 20 44.0 2871 23 11 40.0 12000
empirical studies in hci 155 5 65.0 289 mill. 138 6 33.0 65903
hci theory, concepts and models 24 8 82.0 1690 20 10 33.0 1132
human computer interaction (hci) 50 12 61.0 1690 51 9 28.0 65903
human-centered computing 332 1 48.5 289 mill. 322 4 27.0 7010271
interaction design 17 12 66.0 1506 15 8 27.0 6690
mixed / augmented reality 13 10 24.0 66 18 7 20.0 40
security and privacy 89 19 244.0 11953 58 16 437.0 7010271
social and professional topics 16 24 577.5 26174 15 10 69.0 3155
virtual reality 33 8 32.0 240 50 9 215 9860

Table 2: Median and range for sample sizes and number of papers per research area in the meta-study. Papers categorized as
multiple research areas are included for all that are applicable.

effectsize measure

between groups

within groups

small medium large ‘ small medium large

r,w,n 0.14
n?, R?, w?, € 0.02
Cohen’s d 0.22
OR 1.48
CLES 0.54
Cohen’s f 0.11
Cramer’s V 0.10
f? 0.02
Kendall’s 7 0.09
Spearman’s p 0.13

0.27
0.07
0.44
2.13
0.59
0.22
0.19
0.08
0.17
0.26

0.61 0.12 032 0.72
0.37 0.01 0.10  0.52
1.09 0.19 0.52 1.38
5.90 1.39 244  8.72
0.71 0.54 0.60  0.76
0.55 0.10 0.26  0.69
0.42 0.08 0.22  0.50
0.59 0.01 0.11 1.08
0.41 0.08 0.20  0.51
0.58 0.11 0.30  0.69

Table 3: Guidelines including all research areas and for all effect size measures. The number of included papers is 359 for
between-groups designs and 346 for within-groups designs. The median sample size is 50 for between-groups designs and 28.5

for within-groups designs.

a correlation of r=-0.48, Clys%,=[-0.56, -0.37] 4 When compared to
the results in Figure 4, the negative correlation in HCI is noticeably
weaker than in psychology [74], such that the CIs hardly overlap.

For use in a-priori power analysis, these guidelines should only
be a starting point for researchers’ estimation. Researchers in areas
where large effect sizes are common and thus small samples are
sufficient, should consider whether detecting smaller effect sizes
might also be of practical relevance. Researchers in areas where
small effect sizes are common should not be discouraged from
conducting studies with small sample sizes if they believe the effect
they aim to detect is large, but of course if possible go for larger
samples.

4The paper originally reported a Spearman correlation of r5=-0.45, Clos=[-0.53, -0.35],
which we converted using the formula in Table 1.

5 Effect Size Interpretation

While our research area specific guidelines can help researchers
interpret their results in the context of typical effect sizes of their
area better than Cohen’s guidelines, we do not suggest using them
blindly. They should serve as context but further qualitative inter-
pretation is very valuable.

We conducted a qualitative analysis of effect size interpretation
in quantitative CHI papers published 2023 and identified five cat-
egories of approaches employed by authors to interpret effects
and effect sizes. Currently, effect sizes are rarely used to interpret
results in depth. The most common form of effect discussion is
the use of simple comparisons of descriptive statistics. In the rare
cases of a more qualitative interpretation e.g. a discussion of prac-
tical relevance, the incorporation of effect size values is even less
frequent.
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research area

between groups

within groups

small medium large | small medium large
all 0.14 0.27  0.61 0.12 0.32  0.72
applied computing 0.13 0.33  0.68 | 0.16 044  0.75
collaborative and social computing  0.07 0.27  0.61 | 0.05 0.26  0.62
computing methodologies 0.07 0.20  0.70 | 0.04 0.32  0.96
empirical studies in hci 0.14 0.27 058 | 0.11 0.28  0.60
hci theory, concepts and models 0.14 031 072 | 0.12 0.60  0.98
human computer interaction (hci) 0.12 030 0.64 | 0.17 033 0.64
human-centered computing 0.14 0.27  0.61 | 0.12 032  0.74
interaction design 0.15 025 029 | 0.08 0.13  0.99
mixed / augmented reality 0.29 039  0.60 | 0.25 048 0.78
security and privacy 0.15 0.22 040 0.06 0.17 045
social and professional topics 0.13 0.21 0.64 | 0.21 0.46  0.80
virtual reality 0.26 0.32 050 | 0.26 0.53  0.73

Table 4: Guidelines for separate research areas, using Pearson’s r
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Figure 4: Effect size plotted against sample size per paper and experiment design. For between-groups designs, the Pearson
correlation was r=-0.29, Cly5%=[-0.38, -0.19], and for within-groups designs, it was r=-0.24, Clgss,=[-0.34, -0.14]. Outliers in sample
size are plotted at 352.5 (value used as maximum weight in meta-study).

5.1 Sample Selection

For our qualitative analysis, we chose CHI’23 as the most recently
published at the start of our analysis. We randomly sampled quan-
titative papers as categorized by our filtering (see Section 3.1). We
employed saturation regarding the interpretation approaches as a
stopping criterion, i.e. we continued sampling as long as we were
identifying new approaches. We coded all approaches we found,
even if they only occurred once. We stopped after not identifying
any new approaches in 5 papers. We then analyzed 5 additional

papers to validate the approaches we had identified. Three papers
that contained statistics but were largely qualitative papers were
excluded from this process. This resulted in 67 analyzed papers. We
provide a list of our sample in the supplemental material.

5.2 Data Analysis

In our coding process, we focused on two main goals. We refer to
the first goal as reporting coding. In this step of our process, we
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used deductive coding to answer the following questions for the
papers we analyzed:

o Are (standardized) effect sizes reported with hypothesis tests?
o If yes: Which effect sizes are reported?
o Is there a size judgment reported with the effect size?

Two coders (C1 and C2) established a codebook based on these
research questions and an initial coding of 15 papers. We coded
p-values, standardized effect sizes and size judgments for the papers.
We considered this simple coding, as there are clear true and false
answers [95]. As such, after establishing a shared codebook for
this aspect of the coding process, a single researcher analyzed each
paper. If they were unsure about something, they discussed it with
the other researchers.

We refer to our second goal as interpretation coding. In this step,
we used inductive coding to answer the question

e How are effect sizes interpreted?

C1 and C2 established an initial codebook based on the same 15
papers. They and one additional coder C3 then coded individually.
We consider this aspect to be complex coding, as it leaves more
room for interpretation [95], so C1 and C3 went over all the coded
instances of interpretations, verified them and grouped them to
identify approaches. We set a rather low threshold for what we con-
sidered interpretation. Authors had to go beyond merely reporting
the standardized effect size as is, or alongside descriptive statistics.
Any further elaboration, e.g. specifying the direction of an effect or
rephrasing to explain the effect size, was considered interpretation.

We additionally collected the following information about each
paper:

Type of paper Within the papers considered quantitative by
our filters, we identified four flavors: NHST-quantitative,
method, largely qualitative and Bayesian.

Has descriptive statistics For each paper we noted whether
it reported descriptive statistics with at least one hypothesis
test. We considered descriptive statistics to be e.g. means,
standard deviations or occurrence counts, depending on the
hypothesis test.

5.3 Limitations

Our qualitative evaluation of effect size interpretation is limited
by the expertise of the analyzing authors in the various research
areas at CHI. While we use NHST in our own research and thus can
interpret statistical results, due to our random selection of papers
from across research areas, we are not equally familiar with the
common measures, terminology and goals of each research area.
When analyzing interpretation approaches, the extent of interpre-
tation necessary to arrive at a conclusion was thus not always
straightforward. However, we derived approaches to interpretation
that were applicable across research domains.

5.4 Types of Papers

During our qualitative analysis, we identified four types of paper
within our sample. NHST-quantitative papers were the expected de-
fault. These papers reported quantitative or mixed-methods results
for HCI related research questions. They contained a substantial
amount of hypothesis testing following the NHST paradigm. We
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applied both reporting and interpretation coding to these papers.
Method papers developed new methods in HCIL, such as develop-
ment or validation of new measurement scales or discussing of
analysis methods, without applying them to a content-related re-
search question. Bayesian papers used only or mainly Bayesian
statistics in reporting the results for content-related research ques-
tions. As we focus our contributions on providing guidance for
choosing effect sizes for power analysis and interpreting results
in HCI, i.e. for content-related studies in contrast to method pa-
pers, and as Bayesian papers report different measures of effect
sizes, we only applied the interpretation coding to these papers and
did not apply the reporting coding. Largely qualitative papers only
report hypothesis tests which are not relevant for answering the
main content-related research questions, e.g. Jacobsen et al. [60]
employed two tests to detect shifts in interaction frequency across
households, but otherwise focused on findings from their qualita-
tive analysis. The tests were not discussed further, and we did not
consider these papers in our analysis.

5.5 Overview of Effect Size Reporting

We analyzed a total of 67 papers. Of these, we categorized 57 as
NHST-quantitative, 6 and 1 as method and Bayesian papers respec-
tively and 3 as largely qualitative. Of the 57 NHST-quantitative
papers, 30 reported at least one standardized effect size, and 10 re-
ported effect sizes accompanied by a size judgment at least once. 2
of the papers pointed out a source for their size judgments. 42 of 57
NHST-quantitative papers contained descriptive statistics alongside
at least one test.

5.6 Interpretation Approaches

We identified five categories of approaches used by CHI'23 authors
in interpreting effects and effect sizes in their work. We situate
them in a spectrum from descriptive approaches, which provide
additional, often numerical and objective information to interpret
effect sizes, to interpretative approaches, which include in-depth
reasoning beyond the immediate scope of the work in question. Fig-
ure 5 shows this spectrum, while Table 5 provides specific examples
from our sample of analyzed papers for each of the five categories.
In the following, we describe these approaches in more detail.

On our spectrum from descriptive to interpretative approaches to
interpreting effect sizes, the most descriptive category is comparing
values, which are part of the output from the statistical analysis. The
simplest is stating the direction of the effect, e.g. when comparing
groups, which group was faster or made less mistakes. Reporting
the effect size in units of the study is a bit more involved than
just reporting descriptive statistics, i.e. reporting the difference
in group means in the units in which it was measured instead
of just the group means. This is a form of non-standardized, or
simple effect size. Differences can also be compared in relative units,
using phrases like “20% faster”. This abstracts away the units of the
simple effect size, but is still close to the measurement methods of
the study. However, using such relative units, e.g. percentages, can
be confusing as well, as Dragicevic has elaborated specifically for
reporting of speed differences [41]. He recommends reporting ratios
or percent differences if relative comparisons are required [41]. If
standardized effect sizes are reported, then comparing effect sizes
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Figure 5: Visualization of the spectrum from descriptive to interpretative interpretation approaches. We display approaches
and their respective category on a single horizontal level each. The distance to the x-axis does not carry meaning otherwise.

within a study, or to a set threshold, is another approach we saw.
In this approach, the effect sizes themselves are included in the
comparison, rather than descriptive statistics.

Assigning labels can be considered descriptive or interpretative,
depending on how researchers address them. ‘Labels’ in this con-
text refer to size judgments, e.g., researchers denoting an effect as
having a specific size. Making size judgments using guidelines was
the more common approach, using guidelines for determining a
small, medium or large effect, such as those by Cohen [31], even if
these guidelines were not always explicitly named. This approach
falls on the descriptive end of the spectrum. However, when making
individual size judgments, the judgments are not obviously based
on published guidelines. If they are explained in the context of the
study, we deem these judgments to be interpretative.

Some researchers are using a statistical and methodological ref-
erence frame, i.e., they reference statistical or methodological deci-
sions or consequences in their interpretation of effect sizes. When
following up on non-significant effects researchers use other descrip-
tive approaches of interpreting effect sizes to get around the binary
notion of statistical significance and highlight differences in their

results despite non-significant tests. Researchers referencing sam-
ple size interpreted effect size in the light of the sample size of
their study, especially relating to under-powered or over-powered
hypothesis tests. Finally, effect sizes were used to make method-
ological decisions, e.g., regarding model choice, predictor selection
and merging of data sets within a study, which we consider more
interpretative.

Comparing different observations involves comparing results from
a different data set, in contrast to comparing individual values
within a data set. This can happen as triangulation within work,
where other data sources presented in the same study are used
to back up quantitative results. In our sample, these sources were
mainly qualitative or descriptive. Another approach is compar-
ing with related work, where the comparison is outside the study
currently being reported, with published related work. Both com-
parison approaches can show similarities, where the different ob-
servations support the current result, or comprise of contradictory
results. We allocate these approaches to the middle of the spectrum
between descriptive and interpretative approaches. Comparisons
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Approach category ~ Approach Example Quote
Direction of effect “However, writing with multiple suggestions leads to slightly longer texts.” [35]
Comparing In absolute units of the “[..] significantly increased the number of words in a sentence after which sugges-

test-specific values

Assigning size labels

Using a statistical
and methodological
reference frame

Comparing different
observations

Interpretation for
the big picture

study

In relative units

Comparing effect sizes

Making size judgments us-
ing guidelines

Making individual size judg-
ments

Following up on non-
significant effects

Referencing sample size

Making methodological de-
cisions

Comparing with related
work
Triangulating within work

Possible explanations for ef-
fects

Practical consequences or
limitations of effects

tions were requested — by about 1.5 words (Means: s =10.93, s =9.48; i.e. a relative
increase of 15.3%)” [35] [emphasis added]

“[...] significantly increased the number of words in a sentence after which sugges-
tions were requested — by about 1.5 words (Means: s =10.93, s =9.48; i.e. a relative
increase of 15.3%)” [35] [emphasis added]

“Also, the correlation coefficient between profile type and recommendation ratings
was higher (and sometimes statistically significant) for museum users.” [154]

“Both plank (static core) and press-ups (dynamic upper) showed only non-significant,
small effect sizes (Cohen’s d = 0.239 and 0.298).” [29]

“These differences are rather small, about 6-10 words” [35]

“Finally, it is worth nothing that in both cases the effect is in the right direction ( F
> P ), however the effect sizes are small, meaning that the study would have been
under-powered to detect such small changes” [29]

“However, since our sample size is relatively small (N=24 after two removed samples),
there are limitations regarding the certainty of this observation” [124]

“This means that the model is able to explain 99.98% of the shared variance between
the Hexad-12 and the Hexad-24. This result clearly shows that the two variable sets
are not independent. Thus, we can continue analysing the results of the dimension
reduction analysis to check whether the predictor variables load on the same CF as
the criterion variables.” [73]

“Our findings replicate [41] that individual mood does not change much with effective
peer counseling, but contrasts with those of [3]” [149]

“for concurrent joint attention, the charts area of interest (Figure 6a) all tree con-
ditions perform equally well [sic]. This result is consistent with the Q6 question of
the questionnaire, which indicates no statistical difference across the experimental
conditions. Qualitative analysis of interviews suggests that this result could be due
to the effectiveness of verbal communication in refining and specifying the area of
interest ” [16]

“We believe there are two potential explanations. First, our study procedure is
straightforward. An improved consent form reading may not have a strong effect
in preparing the participants for the later study. Second, our study is low-stake
compared to medical trials.” [152]

“Although our MR system helped to improve the success rate and precision of the
deformation, 4Doodle has limited accuracy compared to machine printing because
of the uncertainty associated with human performance.” [132]

Table 5: Examples of interpretation approaches. All citations within the quotes refer to the bibliography of the original paper.

can reproduce binary judgments about outcomes, e.g. if an interven-
tion is effective or not, in which case they are more descriptive, or
they can go into more interpretative depth regarding connections
between the observations and comparing actual sizes of effects.

On the interpretative side of the spectrum, researchers provide
interpretation for the big picture, i.e. beyond the current study, as
context around effects and effect sizes. They speculate on possi-
ble explanations for effects, e.g. based on other statistical results,
common knowledge, or prior work. Researchers also discuss prac-
tical consequences of effects for further research and theory, but
also deployment of newly developed techniques in practice or in
real-world scenarios.

In considering which approach to use, we do not believe that
one category or one side of the spectrum is better than the other.
Instead, they are suitable for different use cases. The more descrip-
tive approaches in our spectrum are easier to implement, as values
to compare may be provided automatically from statistical analy-
sis software, or can be calculated based on existing data. As such
these approaches can be used for all or most of the statistical tests
reported in a paper. Since descriptive approaches refer to a single
concrete effect, they should be reported close the hypothesis tests.

More interpretative approaches require more effort and knowl-
edge of a field and are thus more dependent on individual re-
searchers’ backgrounds and judgments, in addition to needing
more space to describe implications. They often bring up prior
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work and implications for the future or practicality of deployment
to assess the relevance of not just a single effect size, but multiple
test results taken together for a big picture. Anvari et al. provide
a thorough summary of influencing factors on practical relevance
with examples from psychological research [2]. When judging prac-
tical consequences of effects, even small effects can be immensely
beneficial if many people are affected [2] and no larger effect inter-
ventions exist or are practical. On the other hand, the importance of
large effects can be diminished through practicality or interactions
with other effects or not being as generalizable as anticipated [2].
This is especially important for the main hypotheses and contri-
butions of a paper. Interpretative approaches fit in the discussion,
where a broader context can be taken into account. However, to
maintain a grounding of the interpretation in the statistical results,
numbers from effect size calculations should be referenced in such
discussions, instead of a binary statement that an effect exists or
not based on statistical significance.

In addition, not all approaches are equally applicable to all types
of research. This applies especially to the category Using a statistical
& methodological reference frame, wherein e.g. effect sizes can only
be used to make methodological decisions, if testing was conducted
for this purpose and if results are statistically significant, then fol-
lowing up on non-significant effects is not necessary. When deciding
which approach to use, researchers should thus take into account
one that is suitable for their goal.

6 Recommendations

Based on our meta-study and qualitative analysis, we have the
following recommendations on improving reporting of statistical
results, especially effect sizes.

Report all effect sizes, including those which are not sig-
nificant. To gain a full understanding of the research area, non-
significant effects are also important to report. To avoid overloading
the results section with numbers, consider reporting the full statis-
tics in an appendix.

Interpret effect sizes within your research context. As our
meta-study showed, effect sizes can vary strongly between different
research areas and thus it makes sense to compare a found effect
size with what is common in the area. For the effect sizes r, Cohen’s
d, OR, w, w?, n, 172, €2 and CLES, see the Tables 4 - 9 from this
paper, and for the effect sizes Kendall’s 7, Spearman’s p, Cramer’s
V, Cohen’s f and Cohen’s f2, see the tables in the supplemental
material.

Discuss effects on an appropriate level of detail based on
relevance. Differentiate between the important effect sizes which
need to be discussed in detail, e.g. the main hypothesis tests, com-
pared to a potentially large number of secondary tests, e.g. pairwise
post-hoc tests. Researcher discretion is needed.

Interpret effect sizes qualitatively based on practical rele-
vance. Apart from stating the size of the effect in the context of the
research area, for relevant tests, also discuss the practical relevance.
Our effect size guidelines are meant as a help to authors, reviewers
and readers for judging the relative size of an effect. We want to
make absolutely clear that they should not be used to arbitrarily
accept or reject research work and that small effects can be highly
practically relevant and large effects practically irrelevant.

CHI ’25, April 26-May 1, 2025, Yokohama, Japan

In the following we describe how the guidelines and findings in
our work can be used by HCI researchers.

1) Researchers planning a study have the study design figured
out and now need to decide how many participants they want to
recruit.

2) They know which statistical tests they want to use to analyze
the data, and which type of effect size to report with it. They can
use various ways to decide on an appropriate sample size, including
resource constraints, prior work or deciding on the minimal effect
size of interest [77].

3) For this example, let’s assume the researchers’ topic is very
novel, so there is no direct related work they can use to determine
what effect size to expect.

4) Now there are two options. One, if based on their expert
judgment, they have a minimum relevant effect they want to find,
they can use our tables to check whether this effect size is in line
with other effect sizes in the area of the planned study. Two, if
the researchers do not have this intuition, they can simply use our
tables to see what small, medium and large effect might be in their
area. If the researchers’ study domain is not specifically covered by
the guidelines, e.g. health, they could instead look at a more general
category, like empirical studies in hci. The idea is that researchers
always take the most specific guideline as possible.

5) Should researchers see that the effect size they are targeting
is smaller than what is typically found in their field, they need to
carefully assess whether their experimental set-up is capable of
detecting such small effects, e.g. by including mechanisms to reduce
random errors or ensuring their sample size is large enough.

6) Based on this, the researchers can now conduct a power analy-
sis, e.g. as explained for simple tests in the tutorials accompanying
[96] 3 or for more complex designs by [19, 78].

7) Once the study is completed, and the authors have their effect
sizes, they can use our tables to discuss them in the context of the
related effect sizes in their field. While this step is the last step in the
tutorial, we believe it is the most important step, because this signif-
icantly eases interpretation of results. Using different interpretation
strategies highlighted in this paper, they can e.g. assign size labels
to contextualize the effect size or discuss practical consequences of
the effect they found on their population of interest.

Should researchers be conducting studies with different effect
size measures, the table with the most similar effect size measure
can be used as a starting point. E.g. for Hedge’s g, Cohen’s d values
can be adjusted, given that Hedge’s g is usually a bit lower than
Cohen’s d, since it is less biased [75]. However, this is less reliable
than our empirical analysis for the effect sizes in this paper. Future
work can look at explicitly extending our work to more effect size
measures.

7 Conclusion

In this work, we extracted statistics from quantitative CHI papers
published between 2019 and 2023 and used them to derive effect
size guidelines specific to 12 research areas at CHI. Researchers can
use these guidelines to interpret their results within their research
area or as a starting point for a-priori power analysis. To further aid

Shttps://powerdb.info/tutorials
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researchers in interpreting effect sizes, we analyzed effect size in-
terpretation approaches in quantitative papers published at CHI’23
and identified five categories of approaches. We recommend that
researchers provide additional descriptive interpretation for the
majority of their reported hypothesis tests, and more in-depth qual-
itative interpretation including practical consequences of the main
result.

8 Future Work

Our guidelines for interpreting effect sizes in the different CHI
research areas need to be updated on a regular basis to reflect new
developments in the field. To ease this process and make it more
robust, we recommend that statistical libraries generate machine-
readable and complete data of statistical tests, including subgroup
sample sizes, effect sizes, confidence intervals, test names, test
statistics and descriptive statistics, which can be published as sup-
plemental material with little extra effort for the authors. With this
future general meta-studies could be fully automated.
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Appendix Contents

The appendix contains the prompt used to extract statistics (see
Section B) and Tables 6 to 14, which contain effect size guidelines
for the remaining effect size measures used in the meta-study, 5?2,
Cohen’s d, OR, CLES, Kendall’s 7, Spearman’s p, Cramer’s V, Co-
hen’s f, and f2. We provide these and the guidelines presented in
the main paper in CSV-format for increased ease of processing in
the supplemental material.
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B Prompt

Our final prompt consists of the following parts:

System prompt incl. persona You are a statistics expert and
want to conduct a meta-analysis based on the results of
scientific papers. To do this, you need to extract important
statistics from the tests reported in the scientific paper.
Carefully heed the user’s instructions. Respond using Mark-
down.

Task You need to extract the number of participants in the
study, i.e. the sample size. For tests in the null hypothesis
statistical testing paradigma, you need the following infor-
mation for each individual test:

o the name of the hypothesis test
e the p-value, which can take on numeric values between 0
and 1 and is often denoted as being smaller < or larger >
than a given value
o the effect size, which is a different measure depending on
the hypothesis test used, and consists of a measure, some-
times denoted by a Greek letter and the actual numeric
effect size value
e confidence intervals around the effect size, which consist
of two numeric values, one smaller than the effect size and
one larger than the effect size. Confidence intervals can
be different types, with 95% confidence intervals being the
most common. They are frequently abbreviated CI
e the number of participants whose data was used in this test.
This will often be same as the sample size in the study, but
not always. E.g. in post-hoc tests for independent samples,
only the participants in the conditions compared in the
post-hoc tests are relevant for those post-hoc tests. Or
when only participants who fulfill a certain condition are
considered for an analysis.
Depending on the type of test, you need to extract additional
information. Some tests will report multiple different effect
sizes. You need to extract them all and if available, their con-
fidence intervals. Some tests, like regression analyses, will
report multiple p-values and corresponding effect sizes and
confidence intervals, for each factor involved in the analysis.
You need to collect the information for each factor separately,
but it should still be identifiable to which test the factor be-
longs. Some tests, like analyses of variance (ANOVAs) will
report results (i.e. p-values, corresponding effect sizes and
confidence intervals) separately for one or more main effects
and one or more interaction effects. You need to collect the
information for each effect separately, but it should still be
identifiable to which test the factor belongs.
A combination of these is also possible, so that a test can
have a p-value, effect sizes and confidence intervals associ-
ated with the test in general, also called omnibus test, and
additional p-values, effect sizes and confidence intervals as-
sociated with each individual factor and effect in the test.
Any of the numeric values, such as p-values, effect sizes or
confidence intervals can be missing. Sometimes these values
are not stated explicitly for each test, e.g. tests with the same
result may be summarized e.g. as: "All other comparisons
were not significant”. In that case, it is necessary to identify
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how many tests were conducted in total, e.g. by comparing
how many conditions there are in total and how many are
not yet accounted for by the reporting. Then list each non-
significant test separately. If the numeric values cannot be
extrapolated from the context, they should be considered
missing and you need to state explicitly that the value is
missing.
Other values (like names of hypothesis tests) may also be
missing, in which case determine the value from the con-
text as best as you can. Test statistics or descriptions in the
method section, regarding the used tests in the data analysis
or the study set-up (e.g. to determine whether repeated mea-
sures analyses were likely used, or which types of variables
were measured) can be helpful.
Some values are only reported in tables. If the table’s title or
a reference in the text suggests relevant information in the
table request it via the tool!
If the paper reports tests in a different statistical paradigm,
e.g. using Bayes statistics, you also need information for each
individual test:
o the name of the hypothesis test
o all other statistics associated with this hypothesis test,
including names and values of the statistics

Paper information The paper you have to analyze has the

title [title]. Its abstract is the following:
““ [abstract]

“c

CHI ’25, April 26-May 1, 2025, Yokohama, Japan

It has the following sections:

““ [sections]

And the following tables:

““ [tables] “

Analyze the paper using your tools and make sure to report
every test with its parameters. Remember to also report effect
sizes that are not explicitly stated including but not limited
to:

o correlation coefficients.

e Odds Ratio (OR)

e Risk Ratio (RR)

o Related Measures

After extracting the information for a test (test name, effect
size, amount participants, ...), use the ‘report‘ tool imme-
diately to submit the test. Once the report is submitted,
confirm with 'Report submitted’ before proceeding to the
next test. Do not move forward until you have completed
the report.

After reviewing the sections, have a look at the relevant
tables.

C Effect Size Guidelines

We provide the effect size guidelines for the remaining effect sizes
measures used in the meta-study: 172, Cohen’s d, OR,CLES, Kendall’s
7, Spearman’s p, Cramer’s V, Cohen’s f and fz.
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between groups within groups
research area group group

small medium large | small medium large

all 0.02 0.07  0.37 0.01 0.10  0.52
applied computing 0.02 0.11 046 | 0.02 0.19  0.56
collaborative and social computing  0.00 0.07  0.37 | 0.00 0.07 038
computing methodologies 0.00 0.04 049 | 0.00 0.10  0.93
empirical studies in hci 0.02 0.07 034 | 0.01 0.08 0.36
hci theory, concepts and models 0.02 0.10 052 | 0.01 036  0.97
human computer interaction (hci) 0.01 0.09 042 | 0.03 0.11 041
human-centered computing 0.02 0.07 037 | 0.01 0.10  0.55
interaction design 0.02 0.06 0.08 | 0.01 0.02  0.98
mixed / augmented reality 0.08 0.15 0.37 | 0.06 0.23  0.60
security and privacy 0.02 0.05 0.16 0.00 0.03  0.20
social and professional topics 0.02 0.04 042 | 0.04 0.21  0.64
virtual reality 0.07 0.10 0.25 | 0.07 0.28  0.53

Table 6: Guidelines for separate research areas, using n%, R%, w2, 1712,, r]é or related effect size measures

between groups within groups
research area group group

small medium large ‘ small medium large

all 0.22 044 1.09 0.19 052 138
applied computing 0.20 0.54 126 | 0.25 0.74 146
collaborative and social computing ~ 0.11 044 1.09 | 0.08 042 112
computing methodologies 0.11 032 132 | 0.07 0.52 233
empirical studies in hcei 0.22 043 104 | 0.17 0.46  1.07
hci theory, concepts and models 0.22 0.51 138 | 0.18 1.07  2.46
human computer interaction (hci) 0.19 049 118 | 0.27 0.54 117
human-centered computing 0.22 044 109 | 0.19 0.52 144
interaction design 0.23 0.41 046 0.13 0.20  2.50
mixed / augmented reality 0.46 0.64 1.08 | 0.40 0.81 155
security and privacy 0.23 036 0.65 0.09 0.27  0.75
social and professional topics 0.21 0.34 118 | 0.34 0.77  1.61
virtual reality 0.42 0.52  0.86 | 0.42 0.92 140

Table 7: Guidelines for separate research areas, using Cohen’s d
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between groups within groups
research area group group

small medium large | small medium large

all 1.48 213 590 1.39 2.44 8.72
applied computing 1.42 250 746 | 1.54 347  9.63
collaborative and social computing  1.21 212 593 | 1.16 206  6.12
computing methodologies 1.21 1.74 810 | 113 244 2393
empirical studies in hci 1.48 211 546 | 135 219 571
hci theory, concepts and models 1.46 2.38  8.68 1.37 5.71 26.48
human computer interaction (hci) 1.39 230  6.67 1.59 2,52 6.57
human-centered computing 1.46 213 593 | 1.39 244 939
interaction design 1.50 202 221 1.25 143 2738
mixed / augmented reality 2.22 299 584 | 199 3.89 10.76
security and privacy 1.50 1.86  3.03 1.17 1.59 353
social and professional topics 1.43 1.79  6.67 1.78 3.67 11.63
virtual reality 2.07 246 417 | 2.06 455 894

Table 8: Guidelines for separate research areas, using OR

between groups within groups
research area group group

small medium large ‘ small medium large

all 0.54 0.59 0.71 0.54 0.60 0.76
applied computing 0.54 0.61 074 | 0.55 0.64 0.77
collaborative and social computing  0.52 0.59 0.71 | 0.52 0.58 0.71
computing methodologies 0.52 0.56 0.75 | 0.51 0.60  0.92
empirical studies in hci 0.54 0.59 0.70 | 0.54 0.59  0.70
hci theory, concepts and models 0.54 0.60 0.76 | 0.54 0.70  0.94
human computer interaction (hci) 0.54 0.60 0.72 0.55 0.61 0.72
human-centered computing 0.54 0.59 0.71 | 0.54 0.60  0.77
interaction design 0.55 0.58  0.59 0.53 0.54  0.96
mixed / augmented reality 0.59 0.63 0.71 | 0.58 0.66  0.78
security and privacy 0.55 0.57  0.63 0.52 0.55  0.65
social and professional topics 0.54 0.57 0.72 | 0.57 0.65 0.79
virtual reality 0.58 0.60  0.67 0.58 0.68 0.76

Table 9: Guidelines for separate research areas, using CLES
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between groups within groups
research area group group

small medium large | small medium large

all 0.09 0.17  0.41 0.08 0.20  0.51
applied computing 0.08 0.21 047 | 0.10 0.29 053
collaborative and social computing  0.04 0.17 041 | 0.03 0.17 042
computing methodologies 0.04 0.13 049 | 0.03 0.20  0.81
empirical studies in hci 0.09 0.17 039 | 0.07 0.18  0.40
hci theory, concepts and models 0.09 0.20  0.50 | 0.07 0.40  0.86
human computer interaction (hci) 0.08 0.19 044 | 0.11 0.21 044
human-centered computing 0.09 0.17  0.41 | 0.08 0.20  0.52
interaction design 0.09 0.16 0.18 | 0.05 0.08 0.88
mixed / augmented reality 0.18 025 041| 0.16 0.31  0.56
security and privacy 0.09 0.14  0.26 0.04 0.11  0.29
social and professional topics 0.08 0.14 044 | 0.13 0.30  0.58
virtual reality 0.17 021 033 | 017 0.35 0.51

Table 10: Guidelines for separate research areas, using Kendall’s 7

between groups within groups
research area group group

small medium large ‘ small medium large

all 0.13 0.26 0.58 0.11 0.30 0.69
applied computing 0.12 031 0.65| 0.15 041 0.72
collaborative and social computing  0.06 0.26  0.58 | 0.05 0.24  0.59
computing methodologies 0.06 0.19  0.67 | 0.04 0.30  0.94
empirical studies in hci 0.13 0.25 0.56 | 0.10 0.27  0.57
hci theory, concepts and models 0.13 0.29 0.69 | 0.11 0.57  0.96
human computer interaction (hci) 0.11 0.28  0.61 0.16 031  0.61
human-centered computing 0.13 0.26  0.58 | 0.11 0.30 0.71
interaction design 0.14 0.24 0.27 | 0.08 0.12  0.97
mixed / augmented reality 0.27 0.37 0.57 | 0.23 045 0.75
security and privacy 0.14 0.21  0.37 0.05 0.16  0.42
social and professional topics 0.12 0.20  0.61 | 0.20 043 077
virtual reality 0.25 0.30  0.47 0.25 0.50 0.70

Table 11: Guidelines for separate research areas, using Spearman’s p
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between groups within groups
research area group group

small medium large | small medium large

all 0.10 0.19  0.42 0.08 0.22  0.50
applied computing 0.09 0.23 047 | 0.11 031  0.52
collaborative and social computing  0.05 0.19 042 | 0.04 0.18 043
computing methodologies 0.05 0.14 049 | 0.03 0.22  0.67
empirical studies in hci 0.10 0.19 041 | 0.08 0.20 042
hci theory, concepts and models 0.10 0.22  0.50 | 0.08 042  0.68
human computer interaction (hci) 0.08 0.21 045 | 0.12 0.23 044
human-centered computing 0.10 0.19 042 | 0.08 0.22  0.52
interaction design 0.10 0.18 0.20 | 0.06 0.09  0.69
mixed / augmented reality 0.20 0.27 042 | 017 0.33  0.54
security and privacy 0.10 0.16  0.27 0.04 0.12 031
social and professional topics 0.09 0.15 045 | 0.15 032 0.55
virtual reality 0.18 022 035| 0.18 0.37  0.51

Table 12: Guidelines for separate research areas, using Cramer’s V

between groups within groups
research area group group

small medium large ‘ small medium large

all 0.11 0.22 0.55 0.10 0.26 0.69
applied computing 0.10 0.27 0.63 | 0.12 037 0.73
collaborative and social computing  0.06 0.22 055 | 0.04 0.21  0.56
computing methodologies 0.06 0.16 0.66 | 0.04 0.26  1.17
empirical studies in hci 0.11 0.22 052 | 0.09 0.23 0.3
hci theory, concepts and models 0.11 0.25 0.69 | 0.09 0.53 1.23
human computer interaction (hci) 0.10 0.24  0.59 0.13 0.27  0.58
human-centered computing 0.11 0.22 055 | 0.10 0.26  0.72
interaction design 0.12 0.20 0.23 | 0.06 0.10 1.25
mixed / augmented reality 0.23 032 054 | 0.20 0.41 0.78
security and privacy 0.12 0.18  0.33 0.04 0.13  0.38
social and professional topics 0.10 0.17 059 | 0.17 0.39 0.81
virtual reality 0.21 0.26  0.43 0.21 0.46 0.70

Table 13: Guidelines for separate research areas, using Cohen’s f
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between groups within groups
research area group group

small medium large | small medium large

all 0.02 0.08  0.59 0.01 0.11 1.08
applied computing 0.02 0.12  0.85 | 0.02 024 1.27
collaborative and social computing ~ 0.00 0.08  0.59 | 0.00 0.07  0.62
computing methodologies 0.00 0.04 0.96 | 0.00 0.11  13.29
empirical studies in hci 0.02 0.08 0.52 | 0.01 0.09  0.56
hci theory, concepts and models 0.02 0.11  1.08 | 0.01 0.56 32.33
human computer interaction (hci) 0.01 0.10 0.71 0.03 0.12  0.69
human-centered computing 0.02 0.08 0.59 | 0.01 0.11  1.22
interaction design 0.02 0.07 0.09 | 0.01 0.02 57.82
mixed / augmented reality 0.09 0.18  0.58 | 0.07 0.30 1.53
security and privacy 0.02 0.05 0.18 0.00 0.03  0.25
social and professional topics 0.02 0.05 0.71 0.05 0.27 1.75
virtual reality 0.07 0.12  0.33 | 0.07 0.39 113

Table 14: Guidelines for separate research areas, using f?
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